55 research outputs found

    Minimization of Handoff Failure Probability for Next-Generation Wireless Systems

    Full text link
    During the past few years, advances in mobile communication theory have enabled the development and deployment of different wireless technologies, complementary to each other. Hence, their integration can realize a unified wireless system that has the best features of the individual networks. Next-Generation Wireless Systems (NGWS) integrate different wireless systems, each of which is optimized for some specific services and coverage area to provide ubiquitous communications to the mobile users. In this paper, we propose to enhance the handoff performance of mobile IP in wireless IP networks by reducing the false handoff probability in the NGWS handoff management protocol. Based on the information of false handoff probability, we analyze its effect on mobile speed and handoff signaling delay.Comment: 16 Page

    Experimental assessment of arsenic toxicity in garole sheep in India

    Get PDF
    Arsenic, a dangerous bio-accumulative poison, is a grave threat affecting a large number of people as well as animals throughout the World, particularly in Bangladesh and West Bengal, India. It is also a matter of concern as continuously entering into food chain through biotic and abiotic products. The present study was conducted to evaluate the experimental effect of arsenic toxicosis on Garole sheep of West Bengal. One group was subjected to oral arsenic exposure @ 6.6 mg Kg−1 over 133 days when rests considered as negative control. Periodical arsenic estimation in wool, urine and feces along with hemato-biochemical alteration were checked thoroughly. It was evident from the study that long term arsenic exposure exerted a significant (p < 0.01) alteration compared to normal animal which were further supported by clinical abnormalities. Exposed animals showed histological changes throughout major internal organs like coagulative necrosis of liver, tubular nephritis of kidney and acanthosis of skin etc. The bio-accumulative and excretion pattern of arsenic inside body were also well understood by the arsenic estimation study of wool, urine and feces which may be helpful for discussion regarding arsenic entry into food chain via animals

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Multi-attribute decision making method using advanced Pythagorean fuzzy weighted geometric operator and their applications for real estate company selection

    No full text
    In this paper, a novel multi-attribute decision-making method using Advanced Pythagorean fuzzy weighted geometric operator in a Pythagorean fuzzy environment is developed. Pythagorean fuzzy aggregation operators have drawbacks that they give indeterminate results in some special cases when membership value or non-membership value gets 0 value or 1 value and the weight vector is of type (1,0)T or (0,1)T. The Advanced Pythagorean fuzzy geometric operator, the proposed operator can overcome the drawbacks. In some situations, for example, where the sum of squares of membership degree and non-membership degree gets unit value of a Pythagorean fuzzy number, multi-attribute decision making (MADM) methods using some existing aggregation operators give unreasonable ranking orders (ROs) of alternatives or can't discriminate the ROs of alternatives. But the present MADM method can get over the drawbacks of the existing MADM methods. The present MADM method is devoted to eliminate the drawbacks of the existing MADM methods and to select the best real estate company for investment

    Morphology controlled synthesis of MnCO3–RGO materials and their supercapacitor applications

    No full text
    MnCO3-reduced graphene oxide (MnCO3–RGO) was grown on nickel foam by a facile successive ionic layer adsorption and reaction (SILAR) method and used as a supercapacitor electrode. The morphology of the MnCO3 functionalities was tuned from lotus to flake to spherical shape using different chelating agents during synthesis. The length and width of the individual petals of the lotus structure MnCO3 were found to be ∼200–300 and 50–100 nm, respectively. The reduction of graphene oxide (GO) in MnCO3–RGO composites was confirmed by Raman spectroscopy and electrical conductivity data analysis. The lotus shaped MnCO3 grown on RGO sheets provided a high surface area and electrical conductivity as compared to the developed electrode materials. The cyclic voltammetry, galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy analyses showed that the lotus shaped MnCO3 grown on RGO sheets provided higher current response, large specific capacitance (SC) and low solution, charge-transfer and Warburg resistance as compared to the flake and spherically shaped MnCO3 grown on RGO sheets. A fabricated asymmetric supercapacitor (ASC) device with MnCO3 (lotus) – RGO as the positive electrode and sonochemically reduced GO as the negative electrode – exhibited a working potential of ∼0–1.6 V, SC of ∼ 335 F g−1 at ∼2 A g−1 (∼468 mF cm−2 at ∼2.8 mA cm−2), an energy density of ∼120 W h kg−1 (∼0.16 mW h cm−2) and a power density of ∼16 kW kg−1 (∼22 mW cm−2) with a GCD stability of ∼73% after 10 000 cycles

    Surface modification of reduced graphene oxide through successive ionic layer adsorption and reaction method for redox dominant supercapacitor electrodes

    No full text
    Non-covalent surface modification technique, where the pre-reduction of graphene oxide (GO) was carried out to recover the π-π conjugation, was performed through a successive ionic layer adsorption and reaction (SILAR) method for preparing redox dominant supercapacitor electrodes. The π-π conjugation of reduced graphene oxide (RGO) facilitated non-covalent interaction with sulfanilic acid azo-chromotrop (SA) to develop electrolyte accessible layer-by-layer (LL) assembly of RGO and SA (LSARGO). In comparison, RGO was modified with SA through continuous stirring of SA and GO, followed by the post reduction technique and designated as NSARGO. The LSARGO revealed higher surface area, electrical conductivity and electrochemical performances than the NSARGO. Sharp redox peaks with well cathodic peak current density vs. square root of the scan rate slope value indicated a redox dominant LSARGO electrode, which was further confirmed by the specific capacitance (SC) values, calculated from the cyclic voltammetry and galvanostatic charge–discharge (GCD) curves in three electrode configuration. The electrochemical impedance spectroscopy study also revealed that the LSARGO provided more redox dominant supercapacitor characteristics as compared to NSARGO. The LSARGO exhibited a SC of ∼1023 F g−1 at scan rate of ∼10 m V s−1. The fabricated asymmetric supercapacitor device (ASC) showed an elevated energy and power density of ∼80 W h kg−1 and 17,500 W kg−1, respectively. The ASC experienced high GCD cyclic stability of ∼84% after 10,000 cycles

    In situ preparation of a SAC-RGO@Ni electrode by electrochemical functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application in asymmetric supercapacitors

    No full text
    In situ electro-deposition, reduction and functionalization of graphene oxide (GO) with sulfanilic acid azocromotrop (SAC) were carried out through a facile one-step electrochemical method. Nickel foam was used as the anode during the electro-deposition and the aqueous solution of SAC along with GO was used as the electrolyte. The SAC modified reduced GO (RGO) was deposited on the nickel foam (SAC-RGO@Ni) and was directly used as the electrode for capacitive property analysis. The reduction and functionalization of GO were examined by Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS) techniques. The SAC-RGO@Ni provides a very high specific capacitance of ∼1090 F g−1 due to the synergistic effect of double layer capacitance of RGO and the pseudocapacitance of –SO3H functionalities of SAC. An asymmetric supercapacitor (ASC) cell was designed with SAC-RGO@Ni and thermally reduced GO (TRGO) as positive and negative electrodes, respectively. The ASC device exhibits a high effective capacitance of ∼495 F g−1 at a current density of 10 A g−1 and ∼93% of its total discharging time lies in-between 1.5 and 0.75 V. The ASC cell remains stable up to 10[thin space (1/6-em)]000 charge–discharge cycles. Furthermore, the SAC-RGO@Ni-based ASC device can provide a very high energy density of ∼88.9 W h kg−1 and a large power density of 16[thin space (1/6-em)]500 W kg−1 ensuring its applicability in high power consumption devices

    Efficient Access of Voltammetric Charge in Hybrid Supercapacitor Configured with Potassium Incorporated Nanographitic Structure Derived from Cotton (Gossypium arboreum) as Negative and Ni(OH)2/rGO Composite as Positive Electrode

    No full text
    Potassium (K) incorporated nanographitic structure has been derived from cotton (Gossypium arboreum) through KOH activation followed by postannealing treatment. The outer active sites increase as compared to the inner active sites in consequence to K incorporation. Diffusion time constant also decreases as surface area increases after K incorporation. Electrical conductivity of the nanographitic structure increases with K incorporation and showed a high specific capacitance (∼431 F g–1) as negative electrode material. An asymmetric supercapacitor (ASC) has been configured where α-Ni(OH)2/reduced graphene oxide composite was used as the positive electrode material. Appropriate incorporation of the positive and negative electrode materials in the ASC is supported by the efficient (74%) access of voltammetric charge available by the individual electrodes. Furthermore, low relaxation time constant (∼150 ms), high energy density (∼111 W h kg–1), and long life stability of the ASC ensure its potentiality in the energy storage applications

    Formation of a supramolecular ladder using dinuclear dicyanamide bridged Cu(II) species: Synthesis, crystal structure and magnetic property

    No full text
    The reaction of Cu(ClO<SUB>4</SUB>)<SUB>2</SUB>·6H<SUB>2</SUB>O with bis(3-aminopropyl)methylamine and sodium dicyanamide in aqueous medium results in the formation of a dimeric dicyanamide complex of Cu(II), [Cu<SUB>2</SUB>(medpt)<SUB>2</SUB>(dca)<SUB>2</SUB>](ClO<SUB>4</SUB>)<SUB>2</SUB>. The single crystal X-ray structure reveals that the dinuclear entities are extended to form a supramolecular 1D ladder by H-bonding. Each dinuclear entity is joined to the adjacent unit via the perchlorate anion. Variable temperature magnetic study was performed and the best-fit parameters are J = −1.20 &#x000B1; 0.02 cm<SUP>-1</SUP>, g = 2.08 &#x000B1; 0.01 with R = 2 × 10<SUP>-5</SUP>. These clearly indicate the antiferromagnetic interaction between the Cu(II) center

    Separation/purification of ethylene from an acetylene/ethylene mixture in a pillared-layer porous metal–organic framework

    No full text
    Here we report the synthesis, structure and porous properties of a 3D pillared-layer porous framework of Mn(II)–Mn(III), {[Mn3(bipy)3(H2O)4][Mn(CN)6]2·2(bipy)·4H2O}n (1). The guest-removed framework (1a) shows significant uptake of C2H2, whereas it excludes the other two C2 hydrocarbons (C2H4 and C2H6). Furthermore, excellent separation proficiency for C2H2 from a mixture of C2H2 and C2H4 (1 : 99, v/v) is realized in a breakthrough column experiment under ambient conditions
    corecore